IUCLID

Data Set

OPPT CBIC

Existing Chemical

: ID: 96-49-1 : 96-49-1

CAS No. EINECS Name

: ethylene carbonate

EC No.

: 202-510-0

Molecular Formula

: C3H4O3

Producer related part

Company Creation date : ToxWorks : 05.06.2002

Substance related part

Company

: ToxWorks

Creation date

: 05.06.2002

Status

:

Memo

Printing date

: 09.02.2004

Revision date

Date of last update

: 09.02.2004

Number of pages

: 27

Chapter (profile)

: Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 10

Reliability (profile)

: Reliability: without reliability, 1, 2, 3, 4

Flags (profile)

: Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE),

Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

1. General Information

Id 96-49-1 Date 09.02.2004

1.0.1 APPLICANT AND COMPANY INFORMATION

Type : cooperating company

: ToxWorks, Bridgeton, New Jersey

Type
Name
: ToxWorks, Bridgeton, New Jersey
Contact person
Date
: 06.06.2002
Street
: 1153 Roadstown Road
Town
: 08302 Bridgeton, New Jersey
Country
: United States
Phone
: 856-453-3478
Telefax
: 856-453-3479

Cedex

: ToxWorks@aol.com Email

Homepage

09.09.2002

05.06.2002

1.0.2 LOCATION OF PRODUCTION SITE, IMPORTER OR FORMULATOR

1.0.3 IDENTITY OF RECIPIENTS

1.0.4 DETAILS ON CATEGORY/TEMPLATE

1.1.0 SUBSTANCE IDENTIFICATION

IUPAC Name 1,3-dioxolan-2-one

Smiles Code Molecular formula : Molecular weight : Petrol class

05.06.2002

1.1.1 GENERAL SUBSTANCE INFORMATION

Purity type : typical for marketed substance
Substance type : organic
Physical status : solid

Purity

Colour : practically colorless

Odour : odorless

05.06.2002

1.1.2 SPECTRA

1. General Information

ld 96-49-1 **Date** 09.02.2004

1.2 SYNONYMS AND TRADENAMES

ethylene carbonate

05.06.2002

ethylene glycol carbonate

05.06.2002

05.06.2002

1.3 IMPURITIES

Purity : typical for marketed substance

 CAS-No
 : 75-21-8

 EC-No
 : 200-849-9

 EINECS-Name
 : ethylene oxide

 Molecular formula
 : C2H4O

 Value
 : ca. .025 % w/w

Source : Texaco Material Safety Data Sheet, 1988

05.06.2002

1.4 ADDITIVES

1.5 TOTAL QUANTITY

1.6.1 LABELLING

1.6.2 CLASSIFICATION

1.6.3 PACKAGING

1.7 USE PATTERN

1.7.1 DETAILED USE PATTERN

1.7.2 METHODS OF MANUFACTURE

Origin of substance : Synthesis Type : Production

Remark: Produced by the addition of carbon dioxide to ethylene oxide in presence of

ammonium, alkali metal salt, or Et4NBr as catalyst.

1. General Information

ld 96-49-1 **Date** 09.02.2004

	rce : NLM online, HSDB, 6/5/02 . 10.2002
05.0	06.2002
1.8	REGULATORY MEASURES
1.8.1	OCCUPATIONAL EXPOSURE LIMIT VALUES
1.8.2	ACCEPTABLE RESIDUES LEVELS
1.8.3	WATER POLLUTION
1.8.4	MAJOR ACCIDENT HAZARDS
1.8.5	AIR POLLUTION
1.8.6	LISTINGS E.G. CHEMICAL INVENTORIES
1.9.1	DEGRADATION/TRANSFORMATION PRODUCTS
1.9.2	COMPONENTS
1.10	SOURCE OF EXPOSURE
1.11	ADDITIONAL REMARKS
1.12	LAST LITERATURE SEARCH
1.13	REVIEWS

2. Physico-Chemical Data

ld 96-49-1 **Date** 09.02.2004

2.1 MELTING POINT

Value : $= 36.4 \, ^{\circ}\text{C}$

Sublimation

Method : other Year :

GLP : no data
Test substance : no data

Remark : Calculated value by MPBPWIN v1.40 = 12.9 deg C

Handbook data

Reliability : (2) valid with restrictions

original data not reviewed

Flag : Critical study for SIDS endpoint

06.09.2002 (19)

2.2 BOILING POINT

Value : $= 248 \, ^{\circ}\text{C}$ at

Decomposition

Method : other Year :

GLP : no data

Test substance :

Remark: Calculated value by MPBPWIN v1.40 = 287

Handbook data

Reliability : (2) valid with restrictions

original data not reviewed

Flag : Critical study for SIDS endpoint

06.09.2002 (19)

2.3 DENSITY

Type : relative density
Value : = 1.3214 at 39 °C

Method : other

Year

GLP : no data

Test substance

Remark : Handbook data

Reliability : (2) valid with restrictions

original data not reviewed

Flag : Critical study for SIDS endpoint

06.09.2002 (19)

2.3.1 GRANULOMETRY

2.4 VAPOUR PRESSURE

Value : = $1.307 \text{ hPa at } ^{\circ}\text{C}$

2. Physico-Chemical Data

ld 96-49-1 **Date** 09.02.2004

Remark: estimated value by MPBPWIN v1.40 = 0.0218 mm Hg at 25 deg C, 2.906

hPa.

low vapor pressure
: (2) valid with restrictions

original data not reviewed

Flag : Critical study for SIDS endpoint

08.01.2004 (12)

2.5 PARTITION COEFFICIENT

Reliability

Partition coefficient : octanol-water **Log pow** : = -.34 at °C

pH value

Method : other (calculated): EPA

Year

GLP : no

Test substance: as prescribed by 1.1 - 1.4

Reliability : (2) valid with restrictions

calculated value, no experimental data

Flag : Critical study for SIDS endpoint

09.09.2002

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in : other: miscible with water, ethanol, ethyl acetate, benzene, and chloroform;

soluble in ether, n -butanol and carbon tetrachloride

Value : at °C

pH value

concentration : at °C

Temperature effects

Examine different pol.

pKa : at 25 °C

Description : Stable :

Remark : Estimated at 357,400 mg/l water by WSKOW v1.40

Reliability : (2) valid with restrictions

original data not reviewed

Flag : Critical study for SIDS endpoint

06.09.2002 (18)

2.6.2 SURFACE TENSION

2.7 FLASH POINT

Value : = 143 °C
Type : open cup
Method : other

Year

GLP : no data
Test substance : no data

Reliability : (2) valid with restrictions

original data not reviewed

2. Physico-Chemical Data

Id 96-49-1 **Date** 09.02.2004

06.09.2002 (28)

2.8 **AUTO FLAMMABILITY**

2.9 **FLAMMABILITY**

2.10 **EXPLOSIVE PROPERTIES**

2.11 OXIDIZING PROPERTIES

2.12 DISSOCIATION CONSTANT

2.13 VISCOSITY

Test type : other

Test procedure
Value
Result : = 2 - mPa s (dynamic) at 40 °C 2.0 cP @40*C

Result

Method : other

Year

: no data GLP

Test substance

Remark

none(2) valid with restrictions Reliability

original data not reviewed

08.01.2004 (29)

2.14 ADDITIONAL REMARKS

Id 96-49-1 Date 09.02.2004

3.1.1 PHOTODEGRADATION

Type air : Light source

Light spectrum
Relative intensity : nm

based on intensity of sunlight :

INDIRECT PHOTOLYSIS

: OH Sensitizer

Conc. of sensitizer

Rate constant cm³(molecule*sec) Degradation = 50 % after 160 hour(s)

Deg. product : Method

Year

GLP : no data

Test substance

Reliability (2) valid with restrictions

original data not reviewed

: Critical study for SIDS endpoint Flag

29.10.2002 (25)

3.1.2 STABILITY IN WATER

Deg. product

Method other

Year

GLP : no data

Test substance

Remark : Stable in water at 100deg. C; degrades rapidly at 125 deg. C in presence

of alkalies.

Reliability : (2) valid with restrictions

original data not reviewed

Flag : Critical study for SIDS endpoint

30.10.2002 (26)

3.1.3 STABILITY IN SOIL

3.2.1 MONITORING DATA

3.2.2 FIELD STUDIES

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type : fugacity model level III

Media : water - soil

Air : .0366 % (Fugacity Model Level I) Water : 45.2 % (Fugacity Model Level I) : 54.7 % (Fugacity Model Level I) Soil Biota : % (Fugacity Model Level II/III)

ld 96-49-1 **Date** 09.02.2004

Soil : % (Fugacity Model Level II/III)

Method

:

Year : 2002

Reliability : (2) valid with restrictions

modeled value; no experimental data

29.10.2002 (30)

3.3.2 DISTRIBUTION

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 BIODEGRADATION

Type : aerobic

Inoculum : activated sludge, domestic

Concentration: 48.9 mg/l related to Test substance

related to : 28 day(s)

Contact time : 28 day(s)

Degradation : 72.2 - 80.8 (±) % after 9 day(s)

Result : readily biodegradable

Deg. product : yes

Method : OECD Guide-line 301 B "Ready Biodegradability: Modified Sturm Test

(CO2 evolution)"

Year : 2003 **GLP** : yes

Test substance: as prescribed by 1.1 - 1.4

Method : Deionize d, purified, filtered water was used for this study. The microbial

inoculum was activated sludge from the Columbia Wastewater Treatment Plant, Columbia, MO, which treats predominately domestic sewage. The sludge was prepared by filtering through glass wool; each reaction flask contained 1 mg/l of suspended solids. The activated sludge contained 2.6 x 10^6 colony forming units/ml of microorganisms, or 2.6 x 10^4 CFU/ml in the reaction flasks. To remove CO2, the incoming air was passed through

an Ascarite column, followed by a trap of 5N KOH.

2.4 L of the test medium was placed in each of five 5L flasks, with 30 ml of activated sludge, and aerated and stirred for 24 hours prior to addition of test or reference compound. Reaction flasks were chosen at random for control 1, control 2, ethylene carbonate 1, ethylene carbonate 2, or sodium benzoate, reference compound. Ethylene carbonate was added to create a solution of 20 mg/l carbon, by addition of 146.7 and 146.8 mg ethylene carbonate, repectively, to the two replicates. Sodium benzoate solution was added to the reference flask to generate a solution of 20 mg/l carbon. Additional water was added to each of the flasks to give a total volume of 3

١.

The flasks were incubated in the dark at 22 C and stirred for 29 days with continual aeration by 50-100 ml/min CO2-free air. Off-gases were passed through three 100 ml 0.2N KOH traps; analysis for CO2 was performed on Days 2, 5, 7, 9, 14, 19, 23, 28, and 29. After day 28, an aliquote was removed from each reaction flask and analyzed for total carbon and inorganic carbon. Dissolved organic carbon (DOC) was calculated as the

difference between total carbon and inorganic carbon.

Result : In the control solution, DOC was 0.35 mg C/l at study initiation and 0.15 mg

C/l at termination. These values were subtracted from the DOC values for

ld 96-49-1 **Date** 09.02.2004

the test flasks. For ethylene carbonate, the DOC was 20.2 and 20.6 mg C/l in the two replicates at initiation, and 1.75 and 2.30 mg C/l at termination. Thus, 91% and 89%, respectively, of the original DOC from ethylene carbonate was removed during the biodegradation study. This agrees with the evolution of CO2, which reported a total of 87% and 98.5% of the theoretical CO2 collected in the traps after 29 days. After 9 days of incubation, 72.2 and 80.8% of the theoretical CO2 had been collected.

Conclusion : Ethylene carbonate is readily biodegradable

Reliability : (1) valid without restriction

This study was conducted in a reliable laboratory according to the current

test guideline and GLPs.

Flag : Critical study for SIDS endpoint

09.02.2004 (1)

Type : aerobic

 Inoculum
 : domestic sewage, non-adapted

 Concentration
 : 700 mg/l related to Test substance

related to

Contact time : 5 day(s)

Degradation : $100 (\pm) \%$ after 5 day(s)

Result

Kinetic of testsubst. : 3 hour(s) 4 %

2 day(s) 57 % 5 day(s) 100 %

> % %

Deg. product : not measured

Method : Directive 88/302/EEC, C.9

Year : 1995 GLP : no data

Test substance : as prescribed by 1.1 - 1.4

Method : Zahn-Wellens test based on loss of dissolved organic carbon.

Remark: The report presents only limited details of the study conduct and results.

Result: All dissolved organic carbon was removed by 5 days.

Conclusion: Readily biodegradableReliability: (2) valid with restrictions

Study conducted according to guideline in reliable laboratory, but report

contains few details. No indication if study inspected by QAU.

09.02.2004 (8)

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

BCF : ca. 3.2

Elimination

Method : other

Year :

GLP : no data

Test substance :

Reliability : (2) valid with restrictions

original data not reviewed

Flag : Critical study for SIDS endpoint

29.10.2002 (24)

ld 96-49-1 **Date** 09.02.2004

3.8 ADDITIONAL REMARKS

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type : static

Species: Pimephales promelas (Fish, fresh water)

Exposure period : 96 hour(s) **Unit** : mg/l

LC50 : = 49000 measured/nominal

Limit test

Analytical monitoring : no data

Method : other: ASTM-1980

Year : 1983 GLP : no Test substance : other TS

Method: static test; measured dissolved oxygen, pH, and temperatureResult: EC50 was 53,000 for fry; 49,000 for juvenile fish, and 57,000mg/l for

subadult fish.

Test substance : Ethylene glycol

Reliability : (2) valid with restrictions

Guideline study conducted on primary metabolite

08.01.2004 (23)

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type : static

Species : Ceriodaphnia sp. (Crustacea)

Exposure period : 48 hour(s)
Unit : mg/l

EC0 : = 250 measured/nominal **EC50** : = 5900 calculated

Analytical monitoring: no data

Method : EPA OPPTS 850.1010

Year : 1992 GLP : no data

Test substance : as prescribed by 1.1 - 1.4

Conclusion : EC50 = 5900 mg/l Reliability : (1) valid without restriction

guideline study

Flag : Critical study for SIDS endpoint

08.01.2004 (20)

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Species : Microcystis aeruginosa (Algae, blue, cyanobacteria)

Endpoint : growth rate
Exposure period : 7 day(s)
Unit : mg/l

LOEC : = 2000 calculated

Method : other: Cell multiplication inhibition test

Year : 1975 GLP : no Test substance : other TS

Method : Algal densities were determined by photoelectric measurement. Toxicity

threshold is the value at which an inhibition of cell multiplication is seen

4. Ecotoxicity

4.9

ADDITIONAL REMARKS

ld 96-49-1 **Date** 09.02.2004

(equivalent to LOEC).

Test substance : Ethylene glycol **Reliability** : (2) valid with restriction

Ethylene glycol
(2) valid with restrictions
Guideline study on major metabolite

Flag : Critical study for SIDS endpoint

30.10.2002 (5)

4.4	TOXICITY TO MICROORGANISMS E.G. BACTERIA
4.5.1	CHRONIC TOXICITY TO FISH
4.5.2	CHRONIC TOXICITY TO AQUATIC INVERTEBRATES
4.6.1	TOXICITY TO SEDIMENT DWELLING ORGANISMS
4.6.2	TOXICITY TO TERRESTRIAL PLANTS
4.6.3	TOXICITY TO SOIL DWELLING ORGANISMS
4.6.4	TOX. TO OTHER NON MAMM. TERR. SPECIES
4.7	BIOLOGICAL EFFECTS MONITORING
4.8	BIOTRANSFORMATION AND KINETICS
-	

ld 96-49-1 5. Toxicity Date 09.02.2004

5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION

In Vitro/in vivo In vivo Type Metabolism

Species rat

Number of animals

Males 4 **Females**

Doses

Males : 200 mg/kg

Females

Vehicle water

Route of administration gavage **Exposure time** 72 hour(s)

Product type guidance Decision on results on acute tox. tests Adverse effects on prolonged exposure 1st 2nd Half-lives 0.25 hours

3rd:

Toxic behaviour Deg. product yes Method other Year 1989 **GLP** no data

Test substance

Remark degraded to ethylene glycol. 57% of administered dose (200 mg/kg)

eliminated as CO2; 27% in urine within 72 hours. Ethylene carbonate

disappearance from blood had a half-life of 0.25 hours.

Reliability (1) valid without restriction

adequate description, thorough study published in peer reviewed journal

Flag Critical study for SIDS endpoint

30.10.2002 (11)

5.1.1 ACUTE ORAL TOXICITY

LD50 Type

Value > 5000 mg/kg bw

Species

Strain Sprague-Dawley Sex male/female

Number of animals 10

Vehicle

Doses 5000 mg/kg Method EPA OPP 81-1

Year 1990 **GLP** yes

Test substance as prescribed by 1.1 - 1.4

Conclusion LD50> 5000 mg/kg Reliability (1) valid without restriction

guideline study

Flag Critical study for SIDS endpoint

30.10.2002 (21)

5.1.2 ACUTE INHALATION TOXICITY

5.1.3 ACUTE DERMAL TOXICITY

Type : LD50

Value : > 2000 mg/kg bw

Species: ratStrain: WistarSex: male/female

Number of animals : 10

Vehicle :

Doses : dosed once at 2000 mg/kg

Method : OECD Guide-line 402 "Acute dermal Toxicity"

Year : 1996 **GLP** : yes

Test substance: as prescribed by 1.1 - 1.4

Result: There were no deaths and no clinical signs of systemic reactions to

treatment. There were no local dermal irritations. Four of 5 female rats had a slight body weight loss on day one, but after 14 days there were no treatment-related body weight effects. No treatment-related effects were

seen at necropsy.

Reliability : (1) valid without restriction

Guideline study performed in reliable laboratory according to GLP; full

report reviewed.

Flag : Critical study for SIDS endpoint

09.02.2004 (16)

Type : LD0

Value : > 200 mg/kg bw

Species : rabbit

Strain : New Zealand white

Sex : female
Number of animals : 3
Vehicle : water

Doses : dosed once at 200 mg/kg bw
Method : other: skin irritation study

Year : 2001 **GLP** : yes

Test substance: as prescribed by 1.1 - 1.4

Remark : 500 mg test material applied to skin of 3 rabbits (body weight ~2.5 kg,

range 2.48 to 2.82) for 4 hrs and covered with an occlusive dressing.

Conclusion : LD0 > 200 mg/kg

Reliability : (2) valid with restrictions

data from related test used

Flag : Critical study for SIDS endpoint

09.02.2004 (13)

5.1.4 ACUTE TOXICITY, OTHER ROUTES

5.2.1 SKIN IRRITATION

Species : rabbit Concentration :

Exposure : Occlusive

Exposure time : 4 hour(s)

Number of animals : 3

Vehicle : water

PDII : .1

Result : slightly irritating
Classification : not irritating

Method : OECD Guide-line 404 "Acute Dermal Irritation/Corrosion"

Year : 2001 GLP : yes

Test substance : as prescribed by 1.1 - 1.4

Remark : 62.5% in water, as a paste.
Reliability : (1) valid without restriction

guideline study

29.10.2002 (14)

Species: rabbitConcentration: 100 %Exposure: SemiocclusiveExposure time: 4 hour(s)

Number of animals : 3 Vehicle :

PDII : 0

Result : not irritating
Classification : not irritating

Method : OECD Guide-line 404 "Acute Dermal Irritation/Corrosion"

Year : 2001 **GLP** : yes

Test substance: as prescribed by 1.1 - 1.4

30.10.2002

5.2.2 EYE IRRITATION

Species: rabbitConcentration: undilutedDose: .1 ml

Exposure time

Comment : not rinsed Number of animals : 3 Vehicle : none

Result : moderately irritating

Classification : not irritating

Method : OECD Guide-line 405 "Acute Eye Irritation/Corrosion"

Year : 2001 **GLP** : ves

Test substance : as prescribed by 1.1 - 1.4

Reliability : (1) valid without restriction

guideline study

29.10.2002 (15)

Species : rabbit
Concentration : undiluted
Dose : .1 ml

Exposure time

Comment : not rinsed Number of animals : 3

Vehicle : none

Result : moderately irritating

ld 96-49-1 5. Toxicity Date 09.02.2004

Classification not irritating

Method OECD Guide-line 405 "Acute Eye Irritation/Corrosion"

Year 2001 **GLP**

Test substance as prescribed by 1.1 - 1.4

29.10.2002 (2)

5.3 **SENSITIZATION**

5.4 REPEATED DOSE TOXICITY

Type Chronic rat

Species

Sex male/female Strain other: Crl: CD(SD)

Route of admin. oral feed Exposure period 78 weeks Frequency of treatm. continuous Post exposure period 26 weeks

Doses 0, 25,000 and 50,000 ppm; males changed to 40,000 ppm at 44 weeks

Control group yes, concurrent vehicle

NOAEL <25000 ppm **NOAEL Females** >50000 ppm

Method : other Year 1979 **GLP** no data

Test substance as prescribed by 1.1 - 1.4

Method Diets mixed twice weekly and verified by analytical methods, fed to 26

> males and 26 females of each group. Males fed 50,000 ppm for 42 weeks, allowed 2 weeks off and then at 40,000 ppm for 16 weeks. No hematology or clinical chemistry measurements were taken, but histopathology included: cerebrum, cerebellum, pituitary gland, spinal cord, vertebrae, lung, heart, mediastinum, thymus, thyroid gland, parathyroid gland, liver, spleen, pancreas, adrenal gland, kidney, urinary bladder, ovary, uterus or testis, accessory sex organ, esophagus, stomach, intestinal tract and gross

lesions.

Remark Crystals were thought by the authors to be oxalic acid, but no analytic

confirmation was performed. Toxicity the same as with ethylene glycol, to

which ethylene carbonate is rapidly converted.

Result Reduced survival and body weights were found in both treated groups of

> males, but not females. All high dose males died by week 60; 10 low dose males survived to week 78. In females survival was 23 and 20 of 26 for low

and high dose groups at 78 weeks.

Males, but not females, had severe nephrotoxicity including birefringent crystals in the convoluted tubules, collecting tubules, and sometimes, the renal pelvis and urinary bladder. Low dose males were not appreciably

affected until after week 60.

There was no increase in tumors.

Reliability (2) valid with restrictions

Limited description of organ effects, daily doses of chemical not reported.

Flag Critical study for SIDS endpoint

08.01.2004 (31)

Type : Chronic

Species : rat

Sex : male/female
Strain : Fischer 344
Route of admin. : oral feed
Exposure period : 24 months
Frequency of treatm. : daily
Post exposure period : none

Doses : 0, 40, 200 and 1000 mg/kg/day

Control group : yes, concurrent vehicle

NOAEL : = 200 mg/kg**LOAEL** : = 1000 mg/kg

Method

Year : 1976
GLP : no
Test substance : other TS

Method: 130 males and females at each dose received ethylene glycol in the diet.

Concentrations in the diet were adjusted after each body weight

measurement to maintain a constant mg/kg/day intake. Interim sacrifices were conducted at 6 (10), 12 (10) and 18 months (20/sex/group). Clinical signs, body weights, food consumtion, hematology, clinical chemistry, and urinalysis periodically. Histopathology included: pituitary, brain, thyroid, parathyroids, adrenals, heart, spleen, mesenteric lymph nodes, trachea, lungs, ovaries, oviduct, submandibular salivary gland, esophagus, stomach, duodenum, jejunum, ileum, colon, liver, pancreas, spinal cord, uterus, testes, epididymides, prostate, kidneys, urinary bladder, eyes, skin,

skeletal muscle, femur, sternum.

Result: Kidney pathology seen in high dose males (1000 mg/kg/day), along with

increased water consumption, increased urine volume, increased kidney weight, increased mortality, changes in hematology, clinical chemistry and urinalysis, increased urinary oxalate crystals, and decreased urine specific gravity. In females, there was decreased urine volume and increased oxalate crystals and urine specific gravity; fewer hematology changes, and no clinical chemistry changes, were seen than in males. No adverse effects

were seen in males or females at 200 mg/kg/day.

Test substance : ethylene glycol >99.93% pure **Reliability** : (2) valid with restrictions

Data on chief metabolite; half-life of ethylene carbonate is 0.25 hrs.

30.10.2002 (7)

5.5 GENETIC TOXICITY 'IN VITRO'

Type : Ames test

System of testing : Salmonella typhimurium strains TA98, TA100, TA1535, TA1537, TA1538

Test concentration : 100, 333, 1000, 3333, 10000 ug/plate

Cycotoxic concentr. : none

Metabolic activation: with and without

Result : negative

Method : EPA OPPTS 870.5265

Year : 1983 **GLP** : yes

Test substance: as prescribed by 1.1 - 1.4

Reliability : (1) valid without restriction

guideline study

Flag : Critical study for SIDS endpoint

08.01.2004 (10)

Type : Unscheduled DNA synthesis
System of testing : rat primary hepatocytes

Test concentration : 1 mg/ml to 10^-5 mg/ml

Cycotoxic concentr. : >1 mg/ml

Metabolic activation

Result : negative

Method : EPA OTS 798.5550

Year : 1984 GLP : no data

Test substance : as prescribed by 1.1 - 1.4

08.01.2004 (4)

17.06.2002

Type : other: Cell transformation

System of testing : BALB/3T3 cells
Test concentration : 0.29 to 16250 ug/ml

Cycotoxic concentr. : 8000 ug/ml

Metabolic activation

Result : negative
Method :
Year : 1983

GLP : yes

Test substance : as prescribed by 1.1 - 1.4

17.06.2002 (27)

5.6 GENETIC TOXICITY 'IN VIVO'

Type : Dominant lethal assay

Species: ratSex: maleStrain: Fischer 344Route of admin.: oral feedExposure period: 134 days

Doses : 0, 40, 200, and 1000 mg/kg/day

Result : negative

Method : Directive 88/302/EEC, B.22

Year : 1977 GLP : no Test substance : other TS

Method : F2 male pups from a multigeneration study received ethylene glycol in the

diet from weaning (day 21) to 155 days of age. At 155 days, males were

mated with untreated females for 3 weekly periods.

Result : There were no treatment-related effects on percentage of pregnant rats,

total number of early fetal deaths per pregnant female, or median number

of fetal deaths in any of the three mating periods.

Test substance : Ethylene glycol; the primary metabolite of ethylene carbonate

Reliability : (2) valid with restrictions

Standard test on primary metabolite; half life for metabolism of ethylene

carbonate is 0.25 hr.

Flag : Critical study for SIDS endpoint

08.01.2004 (6)

5.7 CARCINOGENICITY

5.8.1 TOXICITY TO FERTILITY

Type : other: continuous breeding

Species: mouseSex: male/femaleStrain: CD-1Route of admin.: drinking water

Exposure period: 7 day premating; 98-day cohabitation period; 21-day segregation period

Frequency of treatm. : continuous

Premating exposure period

Male : 7 days
Female : 7 days
Duration of test : 126 days

No. of generation : 1

studies

Doses : 0, 0.25, 0.5 and 1.0% = 0, 410, 840 and 1640 mg/kg/day

Control group : yes, concurrent vehicle

NOAEL parental : > 1640 mg/kg bw

NOAEL F1 offspring : = 840 mg/kg bw

Result : slight reduction in pup weight, number of litters/fertile pair and number of

live pups per litter at 1640 mg/kg/day. Unusual facial features (short snout, wide-set eyes) and skeletal defects were seen in F1 offspring at 1640

mg/kg/day.

Method : other: NTP Continuous Breeding Assay

Year : 1985
GLP : no
Test substance : other TS

Test substance : ethylene glycol, principle metabolite of ethylene carbonate

Reliability : (2) valid with restrictions

The study is considered reliable with restrictions because the test was

performed on the metabolite, not the test material.

08.01.2004 (17)

5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

Species : rat
Sex : female

Strain : Sprague-Dawley

Route of admin. : gavage

Exposure period : days 6-15 of gestation

Frequency of treatm. : once daily

Duration of test: observed to day 20 of gestationDoses: 0, 750, 1500, 3000 mg/kg/dayControl group: yes, concurrent vehicleNOAEL maternal tox.: = 1500 mg/kg bwNOAEL teratogen.: = 750 mg/kg bw

Method : other: EPA Guideline 1984

Year : 1990 **GLP** : yes

Test substance : as prescribed by 1.1 - 1.4

Remark : Reduced weight gain at 3000 mg/kg/day gestation days 6-9 (13.8, 9.8*,

11.3, 1.5* grams gain for 0, 750, 1500, and 3000 mg/kg/day group); weight gain days 9-12, 12-15 and 15-20 comparable. Post-dose salivation seen in 13 of 24 dams at 3000 mg/kg/day; in one rat one day at 1500 mg/kg/day. There was no effect on the number of fetuses/litter, resorptions, or sex ratio. Mean fetal weight was reduced at 1500 and 3000 mg/kg/day (3.8, 3.7, 3.5*, and 3.2*, respectively). At 3000 mg/kg/day, there was an

increase in the number of fetuses and the number of litters with malformations. Soft tissue malformations (including hydrocephalus, umbilical herniation, gastroschisis, cleft palate and misshapen and compressed stomach) occurred in 1, 0, 0, and 21 pups in 1,0, 0, and 10 litters, and skeletal malformations (including fused, bifurcated ribs, and missing ribs) occurred in 0, 1, 0, and 11 fetus in 0, 1, 0, and 6 litters. Ethylene carbonate is rapidly converted to ethylene glycol in mammlian organisms; therefore, developmental effects from ethylene carbonate would be expected to be similar to those seen from ethylene glycol. Administration of ethylene glycol to rats and mice by gavage gestation days 6-15 resulted in similar skeletal defects at 1500 mg/kg/day, with a NOEL of 500 mg/kg/day. (Neeper-Bradley et al. (1995). Determination of a noobserved effect level for developmental toxicity of ethylene glycol administered by gavage to CD rats and CD-1 mice. Fundam. Appl. Toxicol. 27:121-130.) Thus, developmental toxicity from ethylene carbonate is likely caused by its conversion to ethylene glycol.

Reliability : (1) valid without restriction

guideline study

Flag : Critical study for SIDS endpoint

08.01.2004 (22)

5.8.3 TOXICITY TO REPRODUCTION, OTHER STUDIES

28.10.2002

5.9 SPECIFIC INVESTIGATIONS

5.10 EXPOSURE EXPERIENCE

5.11 ADDITIONAL REMARKS

6. Analyt. Meth. for Detection and Identification

ld 96-49-1 **Date** 09.02.2004

- 6.1 ANALYTICAL METHODS
- 6.2 DETECTION AND IDENTIFICATION

7. Eff. Against Target Org. and Intended Uses

id 96-49-1Date 09.02.2004

7.1	FUNCTION
7.2	EFFECTS ON ORGANISMS TO BE CONTROLLED
7.3	ORGANISMS TO BE PROTECTED
7.4	USER
7.5	RESISTANCE

8. Meas. Nec. to Prot. Man, Animals, Environment

ld 96-49-1 **Date** 09.02.2004

8.1	METHODS HANDLING AND STORING
8.2	FIRE GUIDANCE
8.3	EMERGENCY MEASURES
8.4	POSSIB. OF RENDERING SUBST. HARMLESS
8.5	WASTE MANAGEMENT
8.6	SIDE-EFFECTS DETECTION
8.7	SUBSTANCE REGISTERED AS DANGEROUS FOR GROUND WATER
QQ	DEACTIVITY TOWARDS CONTAINED MATERIAL

9. References Id 96-49-1

Pate 09.02.2004

(1) Belarde, D. (2003). Ethylene Carbonate: Determination of the Ready Biodegradability Using the CO2 Evolution Method. ABC Study No. 48024. ABC Laboratories, Inc., Columbia, MO, pp. 1-52. Blanchard, E.L. 2001, Jeffsol Ethylene Carbonate (ultrapure grade) Eve Irritation to the (2)Rabbit, Huntingdon Life Sciences Report, Huntingdon, UK, pp. 1-13. (3)Blanchard, E.L., 2001. Jeffsol Ethylene Carbonate (Ultra Pure Grade) Skin Irritation to the rabbit, Huntingdon Life Sciences Report, Huntingdon, UK, pp. 1-13 Brat, S.V., 1984. The Hepatocyte Primary Culture/DNA Repair Assay on Compound 5601-(4) 30-1 Using Rat Hepatocytes in Culture, Naylor Dana Institute, Valhalla, NY, pp. 1-14. Bringmann, G., Kuhn, R., 1978. Testing of substances for their toxicity threshold: model (5) organisms Microcystis (Diplocystis) aeroginosa and Scenedesmus quadricauda. Mitt. Internat. Verein. Limnol. 21: 275-284. (6) dePass, L.R. Woodsire, M.D., Maronpot, R.R., Weil, C.S., 1986. Three generation reproduction and dominanat lethal mutagenesis studies of ethylene glycol in the rat. Fundam. Appl. Toxicol. 7: 566-572. dePass, L.R., Garman, R.H., Wooside, M.D., Giddens, W.E., Maronpot, R.R., Weil, C.S., (7) 1986. Chronic toxicity and oncogenicity studies of ethylene glycol in rats and mice. Fundam. Appl. Toxicol. 7: 547-565. (8) Diefenbach, R. (1995). Bestimmung der biologischen abbaubarkeit von ethylencarbonat im Zahn-Wellens Test. Final Report. Huls laboratory, 45764 Marl, Germany, pp. 1-4. EPA, EPIWIN Suite; KOWWIN v1.66, program obtained from EPA, 2002. (9)Godek, E.G., 1983. Ames Salmonella/Microsome Plate Test 5601-30-1, Pharmakon (10)Research International, Inc., Waverly, PA, pp. 1-9. (11)Hanley, T.R., Schumann, A.M., Langvardt, P.W., Rusek, T.F., Watanabe, P.G. 1989. Metabolism and Disposition of Ethyelene Carbonate in Male Fischer 344 rats. Toxicol. Appl. Pharmacol. 100: 24-31. (12)Howard, P.H., Meylan, W.H. 1997. Handbook of Physical Properties of Organic Chemicals. Boca Raton, Fl: Lewis Publ. (13)Johnson, I.R. 2001. Jeffsol Ethylene Carbonate: Skin Irritation Study in the Rabbit. Central Toxicology Laboratory, Macclesfield, UK, pp. 1-20. (14)Johnson, I.R. 2001. Jeffsol Ethylene Carbonate: Skin irritation Study in the Rabbit. Central Toxicology Laboratory, Macclesfield, UK, pp. 1-20. (15)Johnson, I.R., 2001. Jeffsol Ethylene Carbonate: Eye Irrititation Study in the Rabbit, Central Toxicology Laboratory, Macclesfield, UK, pp. 1-33. (16)Krueger, N. (1996). Ethylencarbonat: Acute dermal toxicity to the rat. Final Report AD -96/0177. Huls AG, Department of Toxicology, 45764 Marl, Germany, pp. 1-21. Lamb, J.C., Maronpot, R.R., Gulati, D.K., Russel, V.S., Hommel-Barnes, L., Sabharwal, (17)P.S., 1985. Reproduction and developmental toxicity of ethylene glycol in the mouse. Toxicol. Appl. Pharmacol. 81: 100-112. (18)Lewis, R.J., Sr. (ed.) 1997. Hawley's Condensed Chemical Dictionary. 13th Ed. New York,

NY: John Wiley & Sons, Inc., p. 466.

9. References ld 96-49-1

Date 09.02.2004

(19)	Lide, D.R. (ed.) 1998-1999. CRC Handbook of Chemistry and Physics. 79th ed. Boca Raton, FL: CRC Press Inc., p. 3-145.
(20)	Mackenzie, L. 1992. 48-Hour static Bioassay, Pace Incoporated Report to Texaco Chemical Company.
(21)	Mallory, V.T. 1990. Acute Exposure Oral Toxicity, Ph-402-TX-014-90; 6398-22-20, Texacar EC. Research report submitted to Texaco.
(22)	Margitich, D.J. 1991. Developmental Toxicity Study in Rats, PH 328-TX-001-90, 6398-22-20. Pharmakon Research International, Inc., Waverly, PA, pp. 1-46, plus appendices of raw data.
(23)	Mayes, M.A., Alexander, H.C., Dill, D.C., 1983. A study to assess the influence of age on the response of fathead minnows in static acute toxicity tests. Bull. Environ. Contam. Toxicol. 31: 139-147.
(24)	Meylan, W.M., et al., 1999. Environ. Toxicol. Chem. 18: 664-672, as cited in HSDB, NLM, 2002
(25)	Meylan, W.M., Howard. P.H., 1993. Computer estimation of the atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. Chemosphere 26: 2293-2299, as cited in HSDB, NLM, 2002
(26)	Riddick, J.A., Bunger, W.B. Sakano, T.K. 1985. Techniques of Chemistry 4th ed. Volume II. Organic Solvents. New York, NY: John Wiley and Sons, Inc., p. 989.
(27)	Rundell, J.O., 1983. Evaluation of Sample No. 5601-30-1 in the in vitro Transformation of BALB/3T3 Cells Assay, Litton Bionetics, Kensington, Md, pp. 1-11.
(28)	Sax, N.I. and R.J. Hawley, Sr. (eds.). 1996. Hawley's Condensed Chemical Dictionary, 11th ed. New York, NY: Van Nostrand Reinhold, p. 1741.
(29)	Texaco MSDS, 1988
(30)	US EPA EPIWIN Suite, obtained from EPA, 2002.
(31)	Weisburger, E.K., Ulland, B.M., Nam, J-m., Gart, J.J., Weisburger, J.H., 1981. Carcinogenicity tests of certain environmental and industrial chemicals. JNCI 67: 75-88.

10. Summary and Evaluation

ld 96-49-1 **Date** 09.02.2004

1	0.	1	FND	POINT	SUM	MARY
•	v.		-1	1 01111		

10.2 HAZARD SUMMARY

10.3 RISK ASSESSMENT